Prime-perfect Numbers

نویسندگان

  • Paul Pollack
  • Carl Pomerance
  • John Lewis Selfridge
چکیده

We discuss a relative of the perfect numbers for which it is possible to prove that there are infinitely many examples. Call a natural number n prime-perfect if n and σ(n) share the same set of distinct prime divisors. For example, all even perfect numbers are prime-perfect. We show that the count Nσ(x) of prime-perfect numbers in [1, x] satisfies estimates of the form exp((log x) log log log ) ≤ Nσ(x) ≤ x 1 3 , as x → ∞. We also discuss the analogous problem for the Euler function. Letting Nφ(x) denote the number of n ≤ x for which n and φ(n) share the same set of prime factors, we show that as x→∞, x ≤ Nφ(x) ≤ x L(x)1/4+o(1) , where L(x) = x log log x/ log log . We conclude by discussing some related problems posed by Harborth and Cohen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Odd perfect numbers have at least nine distinct prime factors

An odd perfect number, N , is shown to have at least nine distinct prime factors. If 3 N then N must have at least twelve distinct prime divisors. The proof ultimately avoids previous computational results for odd perfect numbers.

متن کامل

Perfect Numbers Have a Prime Factor Exceeding 10 7 Paul

It is proved that every odd perfect number is divisible by a prime greater than 107.

متن کامل

Odd Perfect Numbers Have a Prime Factor Exceeding

It is proved that every odd perfect number is divisible by a prime greater than 107.

متن کامل

Odd Perfect Numbers Have a Prime Factor Exceeding 10 7 Paul

It is proved that every odd perfect number is divisible by a prime greater than 107.

متن کامل

Odd perfect numbers have a prime factor exceeding 108

Jenkins in 2003 showed that every odd perfect number is divisible by a prime exceeding 107. Using the properties of cyclotomic polynomials, we improve this result to show that every perfect number is divisible by a prime exceeding 108.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011